area.jpg
  • Facebook
  • YouTube
  • Instagram
134195210_3644342969014077_2134063958416

El reto del mecanizado de nuevos materiales

Uno de los grandes retos en la industria metalmecánica es conseguir la herramienta perfecta, válida para mecanizar cualquier material que se le presente. Esto a día de hoy imposible, no evita que la industria herramentística sea una industria en constante evolución, a la que se le presentan cada día nuevos retos en forma de nuevos materiales a mecanizar o evoluciones de los que ya había.

Con mucha seguridad dentro de la industria metalmecánica las familias de materiales más exigentes para el mecanizado lo constituyen las superaleaciones y los aceros endurecidos, estos últimos muchas veces hasta valores de dureza de 65 HRC, materiales enmarcados dentro de los grupos ISO de materiales S y H respectivamente. No conviene sin embargo olvidar otros materiales que aunque no presenten valores de dureza tan elevados, sí que poseen otras características que los hacen especialmente exigentes en su mecanizado. Estas características pueden estar relacionadas con su mala conductividad térmica, afinidad química con la herramienta, ductilidad, o presencia de partículas abrasivas por ejemplo, lo cual constituyen importantes amenazas para realizar un mecanizado de calidad. Materiales que presentan características de este tipo son la familia de los titanios, sus aleaciones y aluminatos de titanio, aleaciones de aluminio, aluminio-litio, o incluso bloques de arena utilizada en moldes para fundición.


El grupo S, siempre avanzando

La familia de las superaleaciones constituye una de las más exigentes en términos de su metalurgia. Estos materiales son generalmente aleaciones base Níquel, y tienen un uso generalizado en el sector aeronáutico por sus excepcionales características mecánicas de resistencia y tenacidad además de gran resistencia a la corrosión, todo a alta temperatura. Dentro de la clasificación ISO de materiales, se encuentran enmarcadas en el grupo S. Esta clasificación agrupa a los materiales en función de su naturaleza y sus características de mecanizado, siendo el grupo S uno de los que presentan un mecanizado más difícil.


El grupo S no solo se compone de materiales base Níquel, sino que también consta de aleaciones base Cobalto e incluso base Hierro, con altos contenidos de otros elementos de aleación que las dotan de características mejoradas para su uso en ambientes hostiles como el interior de una turbina de gas aeronáutica, marina o de generación de energía. Otras familias de materiales como los Titanios y sus aleaciones también pertenecen a este grupo de materiales, siendo el conocido Ti6Al4V el más ampliamente utilizado en componentes de turbina, sobre todo en las partes menos calientes del compresor, además de en componentes de estructura y tren de aterrizaje.


En los últimos años se han dado numerosos avances en el campo de las superaleaciones, tanto en lo relativo a su metalurgia como a métodos de procesado, sobre todo en lo relativo a su mecanizado, tanto en técnicas como en herramientas. Estos avances son la consecuencia lógica de la inversión e investigación continua en este tipo de materiales por parte de los motorizadores de aeronaves y fundidores, ya que las normas anticontaminación también están presentes en la industria aeronáutica, en la que se busca motores con un menor impacto ambiental, cada vez menos contaminantes y menos ruidosos, con restricciones importantes en la cantidad de gases CO2 y NOx, que pueden expulsar al ambiente, motores más verdes en definitiva.

Respecto a los materiales, han sido varios los avances, surgiendo nuevas aleaciones con propiedades superiores respecto a sus hermanas pequeñas, ya sea bien por variaciones en su composición química que permiten diferencias en el tratamiento térmico lo cual hace posible su funcionamiento en servicio a temperaturas superiores a sus predecesoras, o por desarrollos nuevos. En este sentido cabe destacar la relativa nueva aleación Inconel 718 Plus, versión mejorada de la archiconocida Inconel 718, tan utilizada históricamente en la fabricación de componentes de turbina. Este nuevo material permite unas temperaturas de funcionamiento unos 50 °C superiores a las de su predecesor lo que redunda en unos rendimientos de la turbina mayores, pero también plantea dificultades añadidas en la fabricación de componentes, sobre todo en lo que atañe a su mecanizado, ya que materiales más resistentes a mayores temperaturas implica mayores dificultades en su mecanizado. Aun así resulta ventajoso su empleo en la turbina, ya que la reducción de costes que plantea el uso de la nueva aleación 718 Plus por su mayor rendimiento es mayor que el incremento de dificultades durante su mecanizado.


Otros materiales relativamente nuevos, en este caso desarrollados por el fabricante Haynes, son las aleaciones Haynes 282, Haynes 188, y Haynes 230. Las dos últimas han venido a sustituir a la aleación Haynes 25 ampliamente utilizada en componentes aeronáuticos, y en menor medida en otros componentes de la industria general como rodamientos. El material Haynes 282 es también una aleación de endurecimiento por precipitados del tipo gamma prima, la cual destaca por sus propiedades combinadas únicas de resistencia al creep, estabilidad térmica, soldabilidad y maquinabilidad, no presentes en aleaciones disponibles comercialmente como el Inconel 718 y Waspaloy, pero que según se ha demostrado en ensayos de torneado llevados a cabo por el Grupo de Fabricación de Alto Rendimiento de la Universidad del País Vasco presenta grandes problemas durante el mecanizado, resultando crítica la duración de las herramientas.

El caso del reciente material Haynes 230 constituye una novedad importante, que como ya se ha dicho ha venido han sustituir a las aleaciones 25 y a la posterior aleación 188, y tiene unas excelentes propiedades de resistencia a altas temperaturas, superiores a las de sus predecesores, así como a ambientes oxidantes. Tiene la ventaja de que es colable para realizar componentes por fundición además de tener una fácil fabricabilidad según el fabricante, aunque todavía hay muy poca bibliografía con ensayos de mecanizado que lo certifiquen, se centran más en aspectos de fatiga y creep combinados con oxidación y corrosión.


El caso del Inconel 706 es especial. No se trata de un desarrollo nuevo, en cambio sí que ha despertado de un largo sueño desde que fue desarrollada hace ya más de 30 años partiendo como base del Inconel 718, aunque con un contenido de hierro sustancialmente más elevado. Ha sido como consecuencia de avances en sus técnicas de producción y mejora de sus propiedades que se ha relanzado su uso en componentes aeronáuticos, sobre todo en discos de turbina, ejes, carcasas o soportes de motor. Las características de este material son muy similares a las del Inconel 718 con la ventaja de que tiene una maquinabilidad más elevada y su precio considerablemente inferior, lo cual la hacen apta para motores sujetos a regulaciones más laxas con una notable reducción de costes.


Un último caso del grupo S de materiales de relativa novedad lo constituye una variación de la aleación 718, denominada Inconel 718SPF, el cual es una versión hecha a medida especialmente para procesos de conformado superplástico, donde se requiere un material con altas capacidades mecánicas a alta temperatura, y a la vez que permita generar componentes de geometría compleja, aunque en este caso las tareas de mecanizado juegan un papel de menor importancia.


Son numerosos también los avances que continuamente se están dando en la generación de nuevas superaleaciones, en especial en las superaleaciones monograno o de cristal único, y de solidificación direccional, muy utilizadas sobre todo en la fabricación de alabes por sus excepcionales características anticreep, muy necesarias en estos elementos sometidos simultáneamente a una gran fuerza centrífuga y altas temperaturas. En este sentido se han desarrollado superaleaciones base Níquel y Cobalto como las M4706, DD9, PWA1484 y otras.


Las herramientas también tienen mucho que decir en lo que respecta al mecanizado de estos materiales. Se podría decir que es el metal duro el que casi exclusivamente ha permanecido como material utilizado en plaquita de torno, no tanto en herramienta de fresado donde también encuentra todavía alguna aplicación el acero rápido, aunque es residual en la industria aeronáutica que más uso hace de estos materiales. Tanto el metal duro como el acero rápido no han dejado de evolucionar surgiendo continuamente novedades en su estructura de grano, métodos de compactación y sinterización, así como en los recubrimientos aplicados a las herramientas para prolongar su vida en el mecanizado de materiales. En el caso de los recubrimientos, nuevos conceptos con disposiciones multicapa, con espesores incluso por debajo de la micra han hecho que las tareas de mecanizado se hagan más fáciles, logrando mejorar la integridad superficial del material mecanizado sobre todo en las aleaciones base níquel. Incluso las capas deformadas que surgen después del mecanizado ven reducido su espesor por esta mejora de las herramientas y recubrimientos.


Figura 2. Recubrimiento de herramientas de última generación (Fuente: Mitsubishi Tools).


Para superar el gran reto que supone el mecanizado de estos materiales tan avanzados, la parte del proceso también es objeto de investigación continua. De esta forma la aplicación de técnicas como el mecanizado con refrigeración a alta presión (High Pressure Cooling) es una alternativa muy adecuada con amplio uso en estos materiales, en los que además de suplir la demanda de refrigeración de la herramienta por la gran exigencia del mecanizado, favorece la fragmentación de la viruta. Otra técnica ya estudiada pero que está sufriendo una vuelta de tuerca es el mecanizado asistido por ultrasonidos, la cual por medio de movimientos de la herramienta generalmente de poca amplitud pero muy alta frecuencia, favorece el mecanizado, prolongando la vida de las herramientas e incluso preparando la superficie del componente con unas condiciones que la hacen adecuada para su posterior trabajo en servicio a fatiga.


Estas y otras técnicas que permitan mejorar el proceso deben ser aseguradas en términos de integridad superficial, realizando análisis exhaustivos del estado subsuperficial del material, analizando variaciones de su dureza interna, estado de tensiones residuales etc.


Todas estas técnicas, procesos y nuevos materiales serán objeto de estudio en el nuevo Centro de Fabricación Avanzada Aeronáutica (CFAA) recientemente constituido en el Parque Científico y Tecnológico de Bizkaia como modelo de relación entre Universidad y Empresa. Este centro se constituye como un centro mixto de la Universidad del País Vasco con un enfoque enfocado a la generación de nuevo conocimiento en tecnologías avanzadas de fabricación.


Aleaciones Aluminio-Litio

Como otro ejemplo de material con aplicaciones aeroespaciales que constituyen un gran reto se encuentran las aleaciones aluminio-litio (Al-Li), las cuales son aleaciones de aluminio a las que se ha añadido un porcentaje de litio entre 0,5 y 3,5% para reducir su densidad y aumentar sus propiedades mecánicas. Las aleaciones de aluminio-litio tienen como principales características, primero, que el litio es un metal más ligero que el aluminio (densidad de 0,54 g/cm3), por tanto al alearlo con el aluminio (densidad de 2,70 g/cm3) se obtiene una aleación con menor peso específico. La segunda razón es que, con excepción del berilio, cuyo uso está asociado a problemas de salud y fabricación, el litio es el único metal que mejora el módulo de elasticidad y rebaja la densidad cuando se alea con el aluminio.


Al añadir litio, cada 1% de litio añadido al aluminio, aumenta el módulo elástico en aproximadamente 3 GPa y disminuye la densidad en unos 0,08 g/cm3. Es por ello que las aleaciones Al–Li logran un elevado módulo de elasticidad y alta resistencia, lo que permite el diseño de estructuras más ligeras.


Otra ventaja de estas aleaciones respecto a materiales como los composites, y las aleaciones tradicionales de titanio, es que se pueden trabajar con equipamiento convencional. Su comportamiento es muy similar al de las aleaciones de aluminio tradicionales cuando se someten a operaciones como extrusión, forja, mecanizado, conformado y soldadura. Las superficies se pueden pintar y anodizar, y se pueden deformar plásticamente en ciertas condiciones, soportando temperaturas moderadas.


Aunque el litio es muy reactivo y tiende a quemarse, es relativamente fácil alearlo con el aluminio, por ejemplo en un horno de inducción en crisol de grafito y vaciándolo en un molde de hierro, ambas operaciones bajo atmósfera de argón. El intervalo de fusión está entre 500 °C y 600 °C.


El método más común para obtener estas aleaciones, es con el vaciado por enfriamiento directo (Direct Chill Casting), que es un proceso semicontinuo en el cual la aleación fundida se vierte en un molde refrigerado con agua que tiene una base retráctil. La base se va retirando a medida que el metal se solidifica en la periferia y se acaba de enfriar con agua pulverizada. Esta operación se puede realizar tanto de forma vertical como horizontal. Tecnologías como el ‘DC casting’ producen aleaciones hasta con un 3% de Li como máximo, pues las adiciones mayores de Li causan la formación de fases intermetálicas frágiles como resultado de la segregación, obteniéndose materiales no aptos para su utilización en aplicaciones industriales.


Se ha señalado que la principal ventaja de las aleaciones Al-Li es su baja densidad y por tanto la resistencia específica. Pero se ha visto que esto no es suficiente inicialmente para comercializar estos materiales para su utilización industrial, razón por la cual es fundamental enumerar las principales propiedades como son, las mecánicas (resistencia, fatiga y tenacidad), las térmicas (estabilidad), las químicas (respuesta a la corrosión) y la maquinabilidad, sobre todo la soldabilidad.

Al estudiar las aplicaciones actuales de las aleaciones Al-Li, podemos decir que todo comenzó en la década de 1980, cuando los fabricantes de aluminio, trabajaron en aluminio-litio como sustituto de los tradicionales aluminios; dando lugar a la aparición de las aleaciones comerciales 8090, 2090 y 2091 y la introducción posterior de Weldalite 049 y CP276.


Dentro de las aplicaciones comerciales, en primer lugar destaca la aeronáutica, donde se utiliza este material en grandes componentes como las alas (bordes, estructura y recubrimiento); fuselaje (armazón y cubiertas); pistas de asiento así como gran número de componentes de diversos tamaños que forman parte del avión. Además de los usos comerciales conocidos, no hay que olvidar que existen otras muchas para helicópteros, transporte, etc. que están en producción y estudio. Existe un importante capítulo de elementos que se encuentran bajo régimen de confidencialidad, lo cual limita su conocimiento y volumen real de utilización.


En estos ejemplos de aplicación juegan un importante papel requisitos tales como resistencia, rigidez, peso mínimo y comportamiento ante la corrosión. De todos los beneficios, el ahorro de peso es la más destacada en las aplicaciones aeronáuticas y espaciales. También se integran en estructuras rígidas básicas, depósitos y, como forma metalúrgica, construidas a partir de planchas, entre otras aplicaciones en la construcción de pantallas o barreras térmicas por su comportamiento criogénico.


Fuente: interempresas


217 visualizaciones